
Where innovation starts

Den Dolech 2, 5612 AZ Eindhoven
P.O. Box 513, 5600 MB Eindhoven
The Netherlands
www.tue.nl

Author
Christian W. Günther and Eric Verbeek

Date
October 2, 2012

Version
1.2

XES

Standard Definition

Technische Universiteit Eindhoven University of Technology

1 Introduction

Event logs, as they occur in practice and research, can take a plethora of different forms and
instantiations. Every system architecture that includes some sort of logging mechanism has so
far developed their own, insular solution for this task.

XES is an XML-based standard for event logs. Its purpose is to provide a generally-acknowledged
format for the interchange of event log data between tools and application domains. Its primary
purpose is for process mining, i.e. the analysis of operational processes based on their event
logs. However, XES has been designed to also be suitable for general data mining, text mining,
and statistical analysis.

When designing the XES standard, the following goals have been used as guiding principles.

Simplicity Use the simplest possible way to represent information. XES logs should be easy to
parse and to generate, and they should be equally well human-readable. In designing this
standard, care has been taken to take a pragmatic route wherever that benefits an ease of
implementation.

Flexibility The XES standard should be able to capture event logs from any background, no
matter what the application domain or IT support of the observed process. Thus, XES
aims to look beyond process mining and business processes, and strives to be a general
standard for event log data.

Extensibility It must be easy to add to the standard in the future. Extension of the standard
should be as transparent as possible, while maintaining backward and forward compatibility.
In the same vein, it must be possible to extend the standard for special requirements, e.g.
for specific application domains, or for specific tool implementations.

Expressivity While striving for a generic format, event logs serialized in XES should encounter
as little loss of information as possible. Thus, all information elements must be strongly
typed, and there must be a generic method to attach human-interpretable semantics to
them.

Since XES strives to be a generic interchange format, only those elements which can be identi-
fied in virtually any setting are explicitly defined by the standard. All further information is deferred
to optional attributes, which may be standardized (in terms of their semantics) by external exten-
sions.

1 XES / Version 1.2

Technische Universiteit Eindhoven University of Technology

2 The XES Meta-model

The UML 2.0 class diagram shown in Figure 2.1 describes the complete meta-model for the XES
standard. In the following, the basic components and concepts of XES will be introduced in more
detail.

2.1 Basic Structure

The basic hierarchy of an XES document follows the universal structure of event log information.

2.1.1 Log

On the top level there is one log object, which contains all event information that is related to one
specific process. Examples for processes are:

• Handling insurance claims

• Using a complex x-ray machine

• Browsing a website

Tag name for the log object in the XML serialization of XES: <log>

Attributes of the XML <log> tag:

Attribute key Attribute type Required Description

xes.version xs:decimal Yes The version of the XES standard the document
conforms to (e.g., “1.0”).

xes.features xs:token Yes A whitespace-separated list of optional XES fea-
tures this document makes use of (e.g., “nested-
attributes”). If no optional features are used, this
attribute must have an empty value.

Example:

<log xes . version="1.1" xes . features="nested-attributes">

2.1.2 Trace

A log contains an arbitrary number of trace objects. Each trace describes the execution of one
specific instance, or case, of the logged process. Examples of a trace are:

• One specific insurance claim

2 XES / Version 1.2

Technische Universiteit Eindhoven University of Technology

Log

Trace

Event

ID

Boolean

Float

Int

Date

String

Attribute

Classifier

Extension name

prefix

URI

Key

Value

<declares>

<defines> <defines>

<defines>
<trace-global>

<event-global>

<contains>

<contains>

<contains>

<contains>

Figure 2.1: The UML 2.0 class diagram for the complete meta-model for the XES standard

• One examination in which the x-ray machine is employed

• One visit of the website, by one specific user

Tag name for the trace object in the XML serialization of XES: <trace>

No XML attributes are defined for the <trace> tag.

2.1.3 Event

Every trace contains an arbitrary number of event objects. Events represent atomic granules of
activity that have been observed during the execution of a process. As such, an event has no
duration. Examples of an event are:

• Recording the client’s personal information in the database has been completed

• One picture is taken by the x-ray machine

• An image has been downloaded by the web browser

3 XES / Version 1.2

Technische Universiteit Eindhoven University of Technology

Tag name for the event object in the XML serialization of XES: <event>

No XML attributes are defined for the <event> tag.

2.2 Attributes

The log, trace, and event objects contain no information themselves. They only define the struc-
ture of the document. All information in an event log is stored in attributes. Attributes describe
their parent element (log, trace, etc.).

All attributes have a string-based key. The XES standards requires for each attribute key the
following:

• Attribute keys must contain no whitespace characters.

• Keys must be unique within their enclosing container (e.g., only one attribute with key “id”
per trace).

Logs, traces, and events each contain an arbitrary number of attributes. There are six types of
attribute, each defined by the type of data value they represent.

2.2.1 String

String attributes hold literal information which is generally untyped and of arbitrary length.

In the XML representation of XES, string attribute values are stored as xs:string data type.

Example:

<str ing key="name" value="Tom" / >

2.2.2 Date

Date attributes hold information about a specific point in time (with milliseconds precision).

In the XML representation of XES, string attribute values are stored as xs:dateTime data type.

Example:

<date key="name" value="2009-11-25T19:45:32.345+02:00" / >

2.2.3 Int

Int attributes hold a discrete integer number (with 64bit long precision).

In the XML representation of XES, string attribute values are stored as xs:long data type.

Example:

< i n t key="counter" value="236366" / >

4 XES / Version 1.2

Technische Universiteit Eindhoven University of Technology

2.2.4 Float

Float attributes hold a continuous floating-point number (with 64bit double precision).

In the XML representation of XES, float attribute values are stored as xs:double data type.

Example:

< f l o a t key="percentage" value="75.68" / >

2.2.5 Boolean

Boolean attributes hold a boolean value which can be either true or false.

In the XML representation of XES, boolean attribute values are stored as xs:boolean data type.

Example:

<boolean key="success" value="true" / >

2.2.6 ID

ID attributes hold id information which is generally a UUID.

In the XML representation of XES, string attribute values are stored as xs:string data type.

Example:

< id key="customer" value="f81d4fae-7dec-11d0-a765-00a0c91e6bf6" / >

2.3 Nested Attributes

For providing maximum flexibility in data storage, XES allows nested attributes, i.e. attributes can
themselves have child attributes. While this feature is necessary for encoding certain types of
information efficiently, it is optional for tools to implement nested attributes, i.e. this feature is not
strictly required in order to be compliant to the XES standard.

If a document features nested attributes, it should announce this fact to the parser via the
xes.features attribute of the <log> tag, by containing the token nested-attributes.

If an XES parser implementation does not support nested attributes, it must nevertheless be able
to parse documents which feature nested attributes. These implementations should transparently
ignore and discard any nested attributes, and, where feasible, alert the user to the fact that some
information may not be available.

Example:

<str ing key="city" value="Bearlin">
<boolean key="spellchecked" value="false" / >

< / str ing>

2.4 Global Attributes

The log object holds two lists of global attributes for the trace level and for the event level. Global
attributes are attributes that are understood to be available and properly defined for each element

5 XES / Version 1.2

Technische Universiteit Eindhoven University of Technology

on their respective level throughout the document. This means, a global attribute on the event
level must be available for every event in every trace. A global attribute on the trace level, on the
other hand, must be properly defined for each trace in the log.

Global attributes are defined within respective <global> tags, which are child elements of the
<log> tag in a document.

Example:

<global scope="event">
<str ing key="name" value="" / >

< / global>

The above example would define that every event in the document has a valid string attribute with
key “name”. In the definition, the value of the attribute is only significant in case a trace or event
needs to be created for which no value is provided for the global attribute. In that case, the value
of the definition will be used as the value for the global attribute. In all other cases, the value of
the attribute is insignificant, and can thus be discarded.

Global attributes are a required features for XES standard compliance. Nevertheless, a defen-
sive approach is recommended with respect to global attributes: All XES serialization implemen-
tations should attempt to define all global attributes in the log, and not define global attributes
where complete coverage cannot be ensured. On the other hand, XES parser implementations
should take a healthy distrust towards defined global attributes, and double-check their validity
and completeness while parsing the document.

2.5 Event Classifiers

In XES, there are per se no predefined attributes with any well-understood meaning. Contrast
this with the previous MXML format, where the WorkflowModelElement of each event would point
to its event class, i.e. the higher level concept the event refers to, and which makes it comparable
to other events. Event classifiers are a mandatory feature of the XES standard.

The XES format makes event classification configurable and flexible, by introducing the concept of
event classifiers. An event classifier assigns to each event an identity, which makes it comparable
to other events (via their assigned identity).

Classifiers are defined via a set of attributes, from which the class identity of an event is derived.
In its simplest form, an event classifier is defined by one attribute, and the value of that attribute
would yield the class identity of an event.

Event classifiers are defined for the log, and there may be an arbitrary number of classifiers
for each document. Note that, the set of attributes used to define event classifiers should be a
subset of the global event attributes for that log, i.e., event classifiers should only be defined over
event-global attributes.

Event classifiers are defined within respective <classifier> tags, which are child elements of
the <log> tag in a document.

Example:

< c l a s s i f i e r name="Activity classifier" keys="name status" / >

The above example defines a classifier with the given name (for identification purposes) over the
events’ attributes with keys “name” and “status”. Any two events who have the same values for
both these attributes are considered to be equal by that classifier.

6 XES / Version 1.2

Technische Universiteit Eindhoven University of Technology

2.6 Extensions

The XES standard does not define a specific set of attributes per log, trace, or event. As such, the
semantics of the attributes these elements do contain must necessarily be ambiguous, hampering
the interpretation of that data.

This ambiguity is resolved by the concept of extensions in XES. An extension defines a set of
attributes on any levels of the XES log hierarchy (log, trace, event, and meta for nested attributes).
In doing so, it provides points of reference for interpreting these attributes (and, thus, their parent
elements). Extensions therefore are primarily a vehicle for attaching semantics to a set of defined
attributes per element.

Extensions have many possible uses. One important use is to introduce a set of commonly
understood attributes which are vital for a specific perspective or dimension of event log analysis
(and which may even not have been foreseen at the time of designing the XES standard). The
current set of standard extensions is introduced further below in this document.

Other uses include the definition of generally-understood attributes for a specific application do-
main (e.g., medical attributes for hospital processes), or for supporting special features or re-
quirements of a specific analysis application.

In the XML serialization of XES, extensions are declared with a corresponding <extension>
tag, which is a child tag of the <log> tag. Example:

<extension name="Concept" pref ix="concept" ur i="http://www.xes-standard.org/concept.
xesext" / >

The above statement would declare that the log features attributes defined by the “Concept”
extension.

The “prefix” attribute declares the prefix of all attributes defined by this extension in the log. This
means, the keys of all attributes defined by this extension will be prepended by “concept”, and
the colon separation character.

Example:

<str ing key="concept:name" value="Initialization" / >

In this way, attributes refer back to their respective extension.

The “uri” attribute contains a unique URI which points to the definition of the extension in XESEXT
format. XES implementations can download the XESEXT definition file from that URI, to query
information about extension-defined attributes, or to generate stub implementations for internal
use.

An example of an XESEXT definition is included in Appendix A, and the XSD stylesheet definition
for XESEXT is included in Appendix C.

7 XES / Version 1.2

Technische Universiteit Eindhoven University of Technology

3 XML Serialization of XES

The composition of an XES document follows the meta-model introduced earlier. An example is
given below.

<?xml version="1.0" encoding="UTF-8" ?>
<log xes . version="1.1" xes . features="arbitrary-depth" xmlns="http://www.xes-standard.org

/">
<extension name="Concept" pref ix="concept" ur i="http://www.xes-standard.org/concept.

xesext" / >
<extension name="Time" pref ix="time" ur i="http://www.xes-standard.org/time.xesext" / >
<global scope="trace">

<str ing key="concept:name" value="" / >
< / global>
<global scope="event">

<str ing key="concept:name" value="" / >
<date key="time:timestamp" value="1970-01-01T00:00:00.000+00:00" / >
<str ing key="system" value="" / >

< / global>
< c l a s s i f i e r name="Activity" keys="concept:name" / >
< c l a s s i f i e r name="Another" keys="concept:name system" / >
< f l o a t key="log attribute" value="2335.23" / >
< trace>

<str ing key="concept:name" value="Trace number one" / >
<event>

<str ing key="concept:name" value="Register client" / >
<str ing key="system" value="alpha" / >
<date key="time:timestamp" value="2009-11-25T14:12:45:000+02:00" / >
< i n t key="attempt" value="23">

<boolean key="triedhard" value="false" / >
< / i n t >

< / event>
<event>

<str ing key="concept:name" value="Mail rejection" / >
<str ing key="system" value="beta" / >
<date key="time:timestamp" value="2009-11-28T11:18:45:000+02:00" / >

< / event>
< / trace>

< / log>

The state machine flow diagram in Figure 3.1 details the correct composition of an XES docu-
ment. For a precise definition of the XML serialization of XES documents, please refer to the
XSD stylesheet definition given in Appendix C.

8 XES / Version 1.2

Technische Universiteit Eindhoven University of Technology

Attribute

<log xes.version=? xes.features=?>

<extension name=? prefix=? uri=?/>

<global scope=?>

Attribute

</global>

<classifier name=? keys=?/>

Attribute

<trace>

Attribute

<event>

Attribute

</event>

</trace>

</log>

<string key=? value=?>

Attribute

</string>

<date key=? value=?>

Attribute

</date>

<int key=? value=?>

Attribute

</int>

<float key=? value=?>

Attribute

</float>

<boolean key=? value=?>

Attribute

</boolean>

<id key=? value=?>

Attribute

</id>

Figure 3.1: The state machine flow diagram for the XES standard

9 XES / Version 1.2

Technische Universiteit Eindhoven University of Technology

4 Standard Extensions

The XES meta-model recognizes and treats all extensions as equal, independent from their
source. This allows users of the format to extend it, in order to fit any purpose or domain setting.

However, there are recurring requirements for information stored in event logs, which demand a
fixed and universally understood semantics. For this purpose, a number of extensions have been
standardized. When creating logs for a specific domain, or also when designing log-analyzing
techniques, one should consider using these standardized extensions, since they allow for a
wider level of understanding of the contents of event logs.

In the following, the currently standardized extensions to the XES formats are introduced.

4.1 Concept Extension

The Concept extension defines, for all levels of the XES type hierarchy, an attribute which stores
the generally understood name of type hierarchy elements.

Extension prefix: concept

Extension URI: http://www.xes-standard.org/concept.xesext

Attribute Level Key Type Description

log, trace, event name string Stores a generally understood name for any type hierar-
chy element. For logs, the name attribute may store the
name of the process having been executed. For traces,
the name attribute usually stores the case ID. For events,
the name attribute represents the name of the event,
e.g. the name of the executed activity represented by the
event.

event instance string The instance attribute is defined for events. It represents
an identifier of the activity instance whose execution has
generated the event.

4.2 Lifecycle Extension

The Lifecycle extension specifies, for events, the lifecycle transition they represent in a trans-
actional model of their generating activity. This transactional model can be arbitrary, however,
the Lifecycle extension also specifies a standard transactional model for activities. Using this
extension is appropriate in any setting, where events denote lifecycle transitions of higher-level
activities.

10 XES / Version 1.2

Technische Universiteit Eindhoven University of Technology

3.2 Lifecycle Extension

The Lifecycle extension specifies, for events, the lifecycle transition they represent in a transactional model of their generating

activity. This transactional model can be arbitrary, however, the Lifecycle extension also specifies a standard transactional

model for activities. Using this extension is appropriate in any setting, where events denote lifecycle transitions of higher-level

activities.

Extension prefix: lifecycle

Extension URI: http://code.fluxicon.com/xes/lifecycle.xesext

The standard transactional model is defined in the following state machine.

schedule assign reassign

resume

suspend
manualskip

autoskip

start

withdraw

ate_abort
pi_abort

complete

XES 1.0 Standard Definition 12

Figure 4.1: The state machine for the standard transactional model

Extension prefix: lifecycle

Extension URI: http://www.xes-standard.org/lifecycle.xesext

The standard transactional model is defined in the state machine as shown in Figure 4.1.

11 XES / Version 1.2

Technische Universiteit Eindhoven University of Technology

Attribute Level Key Type Description

log model string This attribute refers to the lifecycle transactional model
used for all events in the log. If this attribute has a value
of “standard”, the standard lifecycle transactional model
of this extension is assumed.

event transition string The transition attribute is defined for events, and specifies
the lifecycle transition represented by each event. If the
standard transactional model of this extension is used, the
value of this attribute is one out of:

schedule - The activity is scheduled for execution.

assign - The activity is assigned to a resource for execu-
tion.

withdraw - Assignment has been revoked.

reassign - Assignment after prior revocation.

start - Execution of the activity commences.

suspend - Execution is being paused.

resume - Execution is restarted.

pi_abort - The whole execution of the process is aborted
for this case.

ate_abort - Execution of the activity is aborted.

complete - Execution of the activity is completed.

autoskip - The activity has been skipped by the system.

manualskip - The activity has been skipped on purpose.

unknown - Any lifecycle transition not captured by the
above categories.

4.3 Organizational Extension

The organizational extension is useful for domains, where events can be caused by human actors,
who are somewhat part of an organizational structure. This extension specifies three attributes
for events, which identify the actor having caused the event, and his position in the organizational
structure.

Extension prefix: org

Extension URI: http://www.xes-standard.org/org.xesext

12 XES / Version 1.2

Technische Universiteit Eindhoven University of Technology

Attribute Level Key Type Description

event resource string The name, or identifier, of the resource having triggered
the event.

event role string The role of the resource having triggered the event, within
the organizational structure.

event group string The group within the organizational structure, of which the
resource having triggered the event is a member.

4.4 Time Extension

In almost all applications, the exact date and time at which events occur can be precisely recorded.
Storing this information is the purpose of the time extension. Recording a timestamp for events
is important, since this constitutes crucial information for many event log analysis techniques.

Extension prefix: time

Extension URI: http://www.xes-standard.org/time.xesext

Attribute Level Key Type Description

event timestamp date The date and time, at which the event has occurred.

4.5 Semantic Extension

Depending on the view on a process, type hierarchy artifacts may correspond to different con-
cepts. For example, the name of an event (as specified by the Concept extension) may refer to
the activity whose execution has triggered this event. However, this activity may be situated on a
low level in the process meta-model, and be a part of higher-level, aggregate activities itself.

Besides events, also other elements of the XES type hierarchy may refer to a number of concepts
at the same time (e.g., a log may refer to different process definitions, on different levels of
abstractions). To express the fact, that one type artifact may represent a number of concepts in a
process meta-model, the semantic extension has been defined.

It is assumed that there exists an ontology for the process meta-model, where every concept can
be identified by a unique URI. The semantic extension defines an attribute, which allows to store
a number of model references, as URIs, in any element of the XES type hierarchy.

Extension prefix: time

Extension URI: http://www.xes-standard.org/time.xesext

Attribute Level Key Type Description

log, trace, event, meta modelReference string References to model concepts in an ontology.
Model references are stored in a literal string,
as comma-separated URIs identifying the on-
tology concepts.

13 XES / Version 1.2

Technische Universiteit Eindhoven University of Technology

4.6 ID Extension

Provides unique identifiers (UUIDs) for elements.

Extension prefix: identity

Extension URI: http://www.xes-standard.org/identity.xesext

Attribute Level Key Type Description

log, trace, event, meta id id Unique identifier (UUID) for an element.

4.7 Cost Extension

The cost extension defines a nested element to store information about the cost associated with
activities within a log. The objective of this extension is to provide semantics to cost aspects
that can be associated with events in a log. The definition associates three data elements with a
particular cost element: the amount associated with the cost element as well as the cost driver
that is responsible for incurring that cost and the cost type. As it is possible for more than one
cost element to be associated with an event, the cost incurred per event is summarized using
the total attribute. The currency element is also recorded once per event. Cost information can
be recorded at the trace level (for instance, to be able to say that it costs $20 when a case
is started). Cost information can also be recorded at the event level (for instance, for certain
event types such as complete or canceled events) to capture the cost incurred in undertaking the
activity by a resource.

Extension prefix: cost

Extension URI: http://www.xes-standard.org/cost.xesext

Attribute Level Key Type Description

trace, event total float Total cost incurred for a trace or an event.
The value represents the sum of all the cost
amounts within the element.

trace, event currency string The currency of all costs of this element in any
valid currency format.

meta amount float The value contains the cost amount for a cost
driver.

meta driver string The value contains the id for the cost driver
used to calculate the cost.

meta type string The value contains the cost type (e.g., Fixed,
Overhead, Materials).

Please note that the amount, driver, and type attributes are meta-attributes, that is, they need an
attribute as parent. These parent attributes are used to separate these three attributes, as the
XES standard does not allow to have multiple attributes with the same key in a single container.
Nevertheless, these parent attributes do not belong to this extension, as their keys typically all
need to be different. As a result, a typical structure for this extension looks like follows:

< trace>
<str ing key="cost:currency" value="AUD" / >
< f l o a t key="cost:total" value="20.00" / >
<str ing key="xyz123" value="">

14 XES / Version 1.2

Technische Universiteit Eindhoven University of Technology

< f l o a t key="cost:amount" value="20.00" / >
<str ing key="cost:driver" value="xyz123" / >
<str ing key="cost:type" value="Fixed Overhead" / >

< / str ing>
<event>

<str ing key="cost:currency" value="AUD" / >
< f l o a t key="cost:total" value="123.50" / >
<str ing key="d2f4ee27" value="">

< f l o a t key="cost:amount" value="21.40" / >
<str ing key="cost:driver" value="d2f4ee27" / >
<str ing key="cost:type" value="Labour" / >

< / str ing>
<str ing key="abc124" value="">

< f l o a t key="cost:amount" value="102.10" / >
<str ing key="cost:driver" value="abc124" / >
<str ing key="cost:type" value="Variable Overhead" / >

< / str ing>
< / event>

< / trace>

15 XES / Version 1.2

Technische Universiteit Eindhoven University of Technology

A XESEXT Example

We have chosen the Semantic Extension (see 3.5) to exemplify the XESEXT format for XES
extensions. This extension defines, on each level of abstraction (log, trace, event, and meta),
the same string-based attribute “modelReference”. Attributes can be defined on all four levels of
abstraction, similar to attribute declarations in XES (while omitting the value attribute). For every
defined attribute, the XESEXT document may feature an arbitrary number of alias mappings as
child elements. These mappings define a human-readable alias for the attribute within a given
namespace (typically a country code, used for localization).

For a more detailed definition of the XESEXT format, the reader is referred to Appendix C, which
contains the XSD stylesheet definition for XESEXT.

<?xml version="1.0" encoding="UTF-8" ?>
<xesextension name="Semantic" pref ix="semantic" ur i="http://www.xes-standard.org/

semantic.xesext">
<log>

<str ing key="modelReference">
< a l i a s mapping="EN" name="Ontology Model Reference" / >
< a l i a s mapping="DE" name="Ontologie-Modellreferenz" / >
< a l i a s mapping="FR" name="Référence au Modèle Ontologique" / >
< a l i a s mapping="ES" name="Referencia de Modelo Ontológico" / >
< a l i a s mapping="PT" name="Referência de Modelo Ontológico" / >

< / str ing>
< / log>
< trace>

<str ing key="modelReference">
< a l i a s mapping="EN" name="Ontology Model Reference" / >
< a l i a s mapping="DE" name="Ontologie-Modellreferenz" / >
< a l i a s mapping="FR" name="Référence au Modèle Ontologique" / >
< a l i a s mapping="ES" name="Referencia de Modelo Ontológico" / >
< a l i a s mapping="PT" name="Referência de Modelo Ontológico" / >

< / str ing>
< / trace>
<event>

<str ing key="modelReference">
< a l i a s mapping="EN" name="Ontology Model Reference" / >
< a l i a s mapping="DE" name="Ontologie-Modellreferenz" / >
< a l i a s mapping="FR" name="Référence au Modèle Ontologique" / >
< a l i a s mapping="ES" name="Referencia de Modelo Ontológico" / >
< a l i a s mapping="PT" name="Referência de Modelo Ontológico" / >

< / str ing>
< / event>
<meta>

<str ing key="modelReference">
< a l i a s mapping="EN" name="Ontology Model Reference" / >
< a l i a s mapping="DE" name="Ontologie-Modellreferenz" / >
< a l i a s mapping="FR" name="Référence au Modèle Ontologique" / >
< a l i a s mapping="ES" name="Referencia de Modelo Ontológico" / >
< a l i a s mapping="PT" name="Referência de Modelo Ontológico" / >

< / str ing>
< / meta>

< / xesextension>

16 XES / Version 1.2

Technische Universiteit Eindhoven University of Technology

B XES XML Serialization Schema Definition (XSD)

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

< !−− This f i l e descr ibes the XML s e r i a l i z a t i o n o f the XES format f o r event log data .
−−>

< !−− For more in fo rma t i on about XES, v i s i t h t t p : / /www. xes−standard . org / −−>

< !−− (c) 2012 by IEEE Task Force on Process Mining (h t t p : / /www. win . tue . n l / iee t fpm) −−>

< !−− Date: June 12 , 2012 −−>
< !−− Vers ion : 1.1 −−>
< !−− Author : C h r i s t i a n Guenther (ch r i s t i an@f lux icom .com) −−>
< !−− Author : E r i c Verbeek (h .m.w. verbeek@tue . n l) −−>
< !−− Change: Added A t t r i bu tab leType (l i s t o f a t t r i b u t e types now occurs on ly once) −−>
< !−− Change: Added id type −−>
< !−− Change: Made xes . features and openxes . version o p t i o n a l −−>

< !−− Date: November 25 , 2009 −−>
< !−− Vers ion : 1.0 −−>
< !−− Author : C h r i s t i a n Guenther (ch r i s t i an@f lux icom .com) −−>

< !−− Every XES XML S e r i a l i z a t i o n needs to conta in exac t l y one log element −−>
<xs:element name="log" type="LogType" / >

< !−− A t t r i b u t a b l e s −−>
<xs:complexType name="AttributableType">

<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="string" minOccurs="0" maxOccurs="unbounded" type="

AttributeStringType" / >
<xs:element name="date" minOccurs="0" maxOccurs="unbounded" type="

AttributeDateType" / >
<xs:element name="int" minOccurs="0" maxOccurs="unbounded" type="AttributeIntType"

/ >
<xs:element name="float" minOccurs="0" maxOccurs="unbounded" type="

AttributeFloatType" / >
<xs:element name="boolean" minOccurs="0" maxOccurs="unbounded" type="

AttributeBooleanType" / >
<xs:element name="id" minOccurs="0" maxOccurs="unbounded" type="AttributeIDType" / >

< / xs:choice>
< / xs:complexType>

< !−− S t r i n g a t t r i b u t e −−>
<xs:complexType name="AttributeStringType">

<xs:complexContent>
<xs:extension base="AttributeType">

< xs :a t t r ibu te name="value" use="required" type="xs:string" / >
< / xs:extension>

< / xs:complexContent>
< / xs:complexType>

< !−− Date a t t r i b u t e −−>
<xs:complexType name="AttributeDateType">

<xs:complexContent>
<xs:extension base="AttributeType">

< xs :a t t r ibu te name="value" use="required" type="xs:dateTime" / >

17 XES / Version 1.2

Technische Universiteit Eindhoven University of Technology

< / xs:extension>
< / xs:complexContent>

< / xs:complexType>

< !−− I n t ege r a t t r i b u t e −−>
<xs:complexType name="AttributeIntType">

<xs:complexContent>
<xs:extension base="AttributeType">

< xs :a t t r ibu te name="value" use="required" type="xs:long" / >
< / xs:extension>

< / xs:complexContent>
< / xs:complexType>

< !−− Floa t ing −po in t a t t r i b u t e −−>
<xs:complexType name="AttributeFloatType">

<xs:complexContent>
<xs:extension base="AttributeType">

< xs :a t t r ibu te name="value" use="required" type="xs:double" / >
< / xs:extension>

< / xs:complexContent>
< / xs:complexType>

< !−− Boolean a t t r i b u t e −−>
<xs:complexType name="AttributeBooleanType">

<xs:complexContent>
<xs:extension base="AttributeType">

< xs :a t t r ibu te name="value" use="required" type="xs:boolean" / >
< / xs:extension>

< / xs:complexContent>
< / xs:complexType>

< !−− ID a t t r i b u t e −−>
<xs:complexType name="AttributeIDType">

<xs:complexContent>
<xs:extension base="AttributeType">

< xs :a t t r ibu te name="value" use="required" type="xs:string" / >
< / xs:extension>

< / xs:complexContent>
< / xs:complexType>

< !−− Extension d e f i n i t i o n −−>
<xs:complexType name="ExtensionType">

< xs :a t t r ibu te name="name" use="required" type="xs:NCName" / >
< xs :a t t r ibu te name="prefix" use="required" type="xs:NCName" / >
< xs :a t t r ibu te name="uri" use="required" type="xs:anyURI" / >

< / xs:complexType>

< !−− Globals d e f i n i t i o n −−>
<xs:complexType name="GlobalsType">

<xs:complexContent>
<xs:extension base="AttributableType">

< xs :a t t r ibu te name="scope" type="xs:NCName" use="required" / >
< / xs:extension>

< / xs:complexContent>
< / xs:complexType>

< !−− C l a s s i f i e r d e f i n i t i o n −−>
<xs:complexType name="ClassifierType">

< xs :a t t r ibu te name="name" type="xs:NCName" use="required" / >
< xs :a t t r ibu te name="keys" type="xs:token" use="required" / >

< / xs:complexType>

< !−− A t t r i b u t e −−>
<xs:complexType name="AttributeType">

<xs:complexContent>
<xs:extension base="AttributableType">

< xs :a t t r ibu te name="key" use="required" type="xs:Name" / >

18 XES / Version 1.2

Technische Universiteit Eindhoven University of Technology

< / xs:extension>
< / xs:complexContent>

< / xs:complexType>

< !−− Elements may conta in a t t r i b u t e s −−>
<xs:complexType name="ElementType">

<xs:complexContent>
<xs:extension base="AttributableType" / >

< / xs:complexContent>
< / xs:complexType>

< !−− Logs are elements t h a t may conta in t races −−>
<xs:complexType name="LogType">

<xs:complexContent>
<xs:extension base="ElementType">

<xs:sequence>
<xs:element name="extension" minOccurs="0" maxOccurs="unbounded" type="

ExtensionType" / >
<xs:element name="global" minOccurs="0" maxOccurs="2" type="GlobalsType" / >
<xs:element name="classifier" minOccurs="0" maxOccurs="unbounded" type="

ClassifierType" / >
<xs:element name="trace" maxOccurs="unbounded" type="TraceType" / >

< / xs:sequence>
< xs :a t t r ibu te name="xes.version" type="xs:decimal" use="required" / >
< xs :a t t r ibu te name="xes.features" type="xs:token" / >
< xs :a t t r ibu te name="openxes.version" type="xs:string" / >

< / xs:extension>
< / xs:complexContent>

< / xs:complexType>

< !−− Traces are elements t h a t may conta in events −−>
<xs:complexType name="TraceType">

<xs:complexContent>
<xs:extension base="ElementType">

<xs:sequence>
<xs:element name="event" maxOccurs="unbounded" type="EventType" / >

< / xs:sequence>
< / xs:extension>

< / xs:complexContent>
< / xs:complexType>

< !−− Events are elements −−>
<xs:complexType name="EventType">

<xs:complexContent>
<xs:extension base="ElementType">
< / xs:extension>

< / xs:complexContent>
< / xs:complexType>

< / xs:schema>

19 XES / Version 1.2

Technische Universiteit Eindhoven University of Technology

C XESEXT Extension Format Schema Definition
(XSD)

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

< !−− This f i l e descr ibes the s e r i a l i z a t i o n f o r extens ions o f the XES format f o r event
log data . −−>

< !−− For more in fo rma t i on about XES, v i s i t h t t p : / /www. xes−standard . org / −−>

< !−− (c) 2012 IEEE Task Force on Process Mining (h t t p : / /wwww. win . tue . n l / ieeet fpm) −−>

< !−− Date: June 12 , 2012 −−>
< !−− Vers ion : 1.1 −−>
< !−− Author : C h r i s t i a n Guenther (ch r i s t i an@f lux icom .com) −−>
< !−− Author : E r i c Verbeek (h .m.w. verbeek@tue . n l) −−>
< !−− Change: Added A t t r i bu tab leType (l i s t o f a t t r i b u t e types now occurs on ly once) −−>
< !−− Change: Added id type −−>

< !−− Date: November 25 , 2009 −−>
< !−− Vers ion : 1.0 −−>
< !−− Author : C h r i s t i a n Guenther (ch r i s t i an@f lux icom .com) −−>

< !−− Any extension d e f i n i t i o n has an xesextension roo t element . −−>
< !−− Chi ld elements are conta iners , which de f ine a t t r i b u t e s f o r −−>
< !−− the log , trace , event , and meta l e v e l o f the XES −−>
< !−− type h ie ra rchy . −−>
< !−− A l l o f these con ta ine rs are o p t i o n a l . −−>
< !−− The roo t element f u r t h e r has a t t r i b u t e s , d e f i n i n g : −−>
< !−− ∗ The name of the extension . −−>
< !−− ∗ A unique pref ix str ing f o r a t t r i b u t e s def ined by t h i s −−>
< !−− extension . −−>
< !−− ∗ A unique URI o f t h i s extension , ho ld ing the XESEXT −−>
< !−− d e f i n i t i o n f i l e . −−>
<xs:element name="xesextension">

<xs:complexType>
<xs:sequence>

<xs:element name="log" minOccurs="0" maxOccurs="1" type="AttributableType" / >
<xs:element name="trace" minOccurs="0" maxOccurs="1" type="AttributableType" / >
<xs:element name="event" minOccurs="0" maxOccurs="1" type="AttributableType" / >
<xs:element name="meta" minOccurs="0" maxOccurs="1" type="AttributableType" / >

< / xs:sequence>
< xs :a t t r ibu te name="name" use="required" type="xs:NCName" / >
< xs :a t t r ibu te name="prefix" use="required" type="xs:NCName" / >
< xs :a t t r ibu te name="uri" use="required" type="xs:anyURI" / >

< / xs:complexType>
< / xs:element>

< !−− A t t r i b u t e s −−>
<xs:complexType name="AttributableType">

<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="string" type="AttributeType" / >
<xs:element name="date" type="AttributeType" / >
<xs:element name="int" type="AttributeType" / >
<xs:element name="float" type="AttributeType" / >

20 XES / Version 1.2

Technische Universiteit Eindhoven University of Technology

<xs:element name="boolean" type="AttributeType" / >
<xs:element name="id" type="AttributeType" / >

< / xs:choice>
< / xs:complexType>

< !−− A t t r i b u t e −−>
<xs:complexType name="AttributeType">

<xs:sequence>
<xs:element name="alias" minOccurs="0" maxOccurs="unbounded" type="AliasType" / >

< / xs:sequence>
< xs :a t t r ibu te name="key" use="required" type="xs:Name" / >

< / xs:complexType>

< !−− A l i as d e f i n i t i o n , d e f i n i n g a mapping a l i a s f o r an a t t r i b u t e −−>
<xs:complexType name="AliasType">

< xs :a t t r ibu te name="mapping" use="required" type="xs:NCName" / >
< xs :a t t r ibu te name="name" use="required" type="xs:string" / >

< / xs:complexType>

< / xs:schema>

21 XES / Version 1.2

Technische Universiteit Eindhoven University of Technology

D Changes

D.1 Version 1.2

Eric Verbeek Added ID extension.

Eric Verbeek Added cost extension.

22 XES / Version 1.2

